
17th Telecommunications forum TELFOR 2009 Serbia, Belgrade, November 24-26, 2009.

Abstract — We present an overview of radar data

acquisition, processing, and visualization system,

implemented mostly in software that runs on a commercially

available personal computer. Real-time performance of

standard radar data processing procedures and radar data

visualization is achieved by utilizing advanced features of

modern microprocessors and graphical processors. The use of

desktop application programming paradigms enables high

system modularity and better interaction between the user

and the system.

Keywords — Radar, Plot Extraction, Target Tracking, PPI

I. INTRODUCTION

Radar detects and locates distant objects by transmitting

a signal of known waveform and observing the received

echoes [1]. Radar systems are in use for seventy years and

during that time, they expanded in both capability and in

applicability. Applications of modern radar systems

include civil air-traffic control, ship safety, space

exploration, weather observation, law enforcement and

military applications.

Radar data processing and visualization are

computationally very demanding operations. In past,

highly specialized hardware was required to perform these

operations in real-time. Result of this was that the radar

data processing and visualization equipment had high

development and maintenance costs, was big in size and

hard to modify.

In recent years, processing power of commercially

available personal computers (PC) has been significantly

increased. This is a consequence of both Moore's law and

of considerable improvement of system architecture. The

result is that a number of computationally demanding

tasks, such as 3D animation, video editing, and music

production can now be accomplished on a PC.

This trend included radar systems as well. Nowadays,

most of the radar data processing procedures and the radar

data visualization can be implemented on a commercially

available PC. This decreases costs of radar system

development and maintenance, while increasing system

flexibility since algorithms are implemented as software

components that can be modified easily.

We present a radar data acquisition, processing and

visualization system. All standard radar data processing

Miloš Jevtić, Institute Mihajlo Pupin, Volgina 15, 11060 Belgrade,

Serbia; (e-mail: milos.jevtic@institutpupin.rs)

Milovan Stamatović, Institute Mihajlo Pupin, Volgina 15, 11060

Belgrade, Serbia; (e-mail: milovan.stamatovic@institutpupin.rs).

procedures and radar data visualization are implemented as

software modules that run on a commercially available PC

with low-end graphical adapter. Advanced features of

modern microprocessors and graphical processors are

utilized to achieve real-time performance. In addition, we

notice that with a transition to PC-based software

implementation many concepts inherent to desktop

application programming become available for radar

system design. The use of these concepts allows us to bring

the interaction between the user and the system to a level

that was hard to achieve in traditional radar system

implementations.

II. SYSTEM ORGANIZATION

Presented system is designed for use with conventional

radar with mechanically rotated antenna. As shown in Fig.

1, the system consists of:

• Data Acquisition Module

• Plot Extractor

• Target Tracker

• Radar Display

• Distribution Subsystem

Fig. 1. System organization.

Data Acquisition Module is an interface between the

system and the radar. This is a PCI card, which receives

analog radar video, video trigger and azimuth. Video is

digitized and transferred across the PCI bus using high-

speed DMA. Data Acquisition Module is the only

component in the system based on specific hardware.

Plot Extractor, Target Tracker and Radar Display are

implemented as independent applications/processes, which

communicate via Distribution Subsystem.

Radar Data Processing and Visualization on

Desktop Platforms

Miloš Jevtić, Milovan Stamatović

1315

 Distribution Subsystem represents set of libraries

developed for local or remote inter-process communication

(IPC). It is an application level protocol, built on top of

TCP/IP and it is based on a distributed version of publish-

subscribe design pattern [2]. This way, weak coupling of

software modules is enabled, increasing system

modularity, flexibility and stability. Some features of our

system that illustrate this are:

• the system can be deployed in a number of

configurations (e.g. on a single PC or on multiple

networked PCs) without rebuilding the executables,

• software module can be hot-plugged into a running

system without interrupting the operation of the system,

• failure in one software module does not affect the rest

of the system.

III. PLOT EXTRACTOR

Plot extractor is software application that analyses radar

video and detects potential targets. Processing is based on

three main phases: clutter suppression, adaptive

thresholding and plot extraction.

Clutter suppression is based on Clutter Map Constant

False Alarm Rate (CFAR) algorithm from [3].

Adaptive thresholding is implemented as Cell Averaging

CFAR (CA-CFAR) detection, described in [4].

Plot extraction is detection of target-like shapes among

video samples that exceed the threshold using standard m-

of-n separation criterion.

As shown in Fig. 1, connection between Plot Extractor

and acquisition module is direct, which is not in

accordance with principle that TCP/IP is our choice for

IPC. Since Plot Extractor is the only component in our

system that requires high sample rate, i.e. undecimated

video signal for processing, it is optimal to place it on the

same machine as the signal source. Another consumer of

raw video samples is Radar Display. Since Radar Display

requires lower sample rates, Plot Extractor also performs

downsampling of the video before streaming it on the

network.

Plot Extractor, in its basics, is a signal processing

application that runs in desktop environment. This implies

that we are able to offer user with desktop-like features, to

bring user-system interaction on a higher level. For plot

extracting process, we find that the classic editing desktop

feature could be very useful, so we develop WYSIWYG

(What You See Is What You Get) nondestructive

extraction parameters editor, shown in Fig. 2.

It is nondestructive because it runs in parallel with the

main extractor. When user opens the editor, new instance

of extractor is launched. User monitors radar video and if

he finds some interesting scenario, for example an

interesting mixture of real targets and clutter, he can still

the image and make fine tuning of all extraction

parameters while being able to see the result of extraction

after every change of parameters.

IV. TARGET TRACKER

Plot represents an actual target or false alarm (e.g.

clutter, noise, etc.) detected in particular radar scan. In

contrast to that, track represents an actual target whose

presence is confirmed with a sequence of plots from

consecutive radar scans [5]. Each track contains an

estimation of the target's kinematic state (position and

velocity) and a history of kinematic states from previous

scans. Tracks are generated by Target Tracker.

Fig. 2. Extraction parameters editor.

Target Tracker is designed for track-while-scan (TWS)

[6] mode of operation, which means that plots are received

and processed in regular intervals as the radar regularly

scans its search volume. Operation of Target Tracker

consists of three main tasks:

1. Data association – Correlation of new plots with

already established tracks.

2. Track filtering – Estimating target's kinematic state

using associated plot and model of target's motion.

3. Track initiation and maintenance – Detection of the

presence of new targets and disappearance of previously

present targets.

The goal of data association is to correctly assign plots

to existing tracks. The basis for assignment is statistical

distance between a given plot and a given track. Statistical

distance is calculated as a weighted combination of

available plot-to-track coordinate differences.

We choose Global Nearest Neighbor (GNN) [6] for data

association method in Target Tracker. In GNN, all

possible plot-to-track pairs are taken into account

simultaneously. A combination of plot-to-track pairs is

sought, such that the sum of plot-to-track statistical

distances is minimal. To each track at most one plot is

assigned, and each plot is assigned to at most one track.

Other data association methods like Joint Probabilistic

Data Association (JPDA) [6] and Multiple Hypothesis

Tracking (MHT) [6] have much better performance in high

false alarm rate (FAR) situations compared to GNN.

However, CFAR processing applied in Plot Extractor

reduces FAR to such level that GNN association achieves

adequate performance, while being computationally less

demanding than JPDA and MHT. We implement GNN

using Munkres algorithm [7]. Prior to association, we

apply ellipsoidal gating technique described in [6] to

eliminate unlikely plot-to-track pairs.

1316

 When data association is done, track filtering is applied.

Track filter operates in predictor-corrector fashion. Each

track's kinematic state estimate is predicted based on the

model of target motion and the estimate of the kinematic

state made on previous scan. Then, track's kinematic state

estimate is corrected using plot associated with the track

on current scan. Basic tool for track filter implementation

is Kalman Filter (KF) [8]. Dynamics of target motion are

expressed with transition matrix and process noise

covariance matrix of the KF.

Since single KF is inadequate for tracking maneuvering

targets, we implement track filter using Interacting

Multiple Model (IMM) [9] technique. IMM approach is

based on assumption that the target can be in finite number

of motion models (e.g. in straight motion or in maneuver).

A separate KF is used for each model. Model probability

of a particular model is the probability that the target is in

that model. Model probabilities for each track are updated

from scan to scan, based on plots that are assigned to the

track. Each model's KF calculates a separate estimate of

target's kinematic state. These estimates are weighted with

model probabilities and summed to form an overall

estimate of the kinematic state. Before predictions for the

next scan are made, new kinematic state estimates are

computed for each model via the mixing process.

Plots that are not assigned to existing tracks are used to

initiate new tracks. Two consecutive plots are used to

create a tentative track. Single KF is used to track a

tentative track until enough information is gathered to

decide whether the track represents a real target or a

sequence of false alarms. If at least M plots were assigned

to a tentative track during N consecutive scans, the track is

considered a real target and therefore promoted to a

confirmed track (which is tracked with IMM thereafter).

Otherwise, the track is discarded. When no plots are

assigned to a confirmed track in several consecutive scans,

the track is deleted.

For debugging, tuning and demonstration purposes, we

augment Target Tracker with a graphical user interface

(GUI) capable of displaying detailed track histories.

Track’s detailed history consists of plots that were

assigned to the track, position estimates of each model’s

KF and overall position estimates. In Fig. 3, we give a

screenshot showing Target Tracker’s GUI with track

history of a simulated target. Simulated target is used since

real-world datasets containing maneuvering targets are not

available to us. The target moves at constant velocity of

300 m/s and makes three constant rate turns with radial

accelerations of 10, 20, and 40 m/s2. Antenna rotation

period of 10 s is assumed. White noise with 200 m

standard deviation is added to plots of simulated target,

modeling position measurement inaccuracy. The target is

tracked with IMM consisting of two KF, first for straight

motion and second for maneuvers. In Fig. 3, red, green,

and black dots connected with lines represent position

estimates of straight motion KF, position estimates of

maneuver KF and overall position estimates, respectively,

while blue dots represent plots.

Fig. 3. Target Tracker GUI displaying detailed track

history of a simulated target.

V. RADAR DISPLAY

Radar Display is a rich user interface application and it

can visualize all kinds of radar data and overlay graphics.

It displays: PPI video, A-scan video, plots, tracks and

additional overlay graphics such as GIS objects, various

markers, polar coordinate system etc.

This application merges modern GUI features and true,

dynamic and natural emulation of real analog radar

display. From the implementational point of view, the

application has to meet the following requirements:

• high resolution of radar picture,

• high refresh/frame rate,

• for every frame all image pixel values must be

recomputed,

• a lot of graphical objects must be drawn for every

frame.

In achieving these requirements, two features of modern

commercially available PCs play significant role. These

features are SSE instruction set [10] and graphic

acceleration.

SSE stands for Streaming SIMD Extensions, where

SIMD is acronym for "Single Instruction Multiple Data",

and it is a technique for achieving data level parallelism.

SSE technology is intended to speed up those parts of

program where the same set of operations is applied to

1317

 large number of data points, which is common situation in

many multimedia applications.

In Radar Display, SSE instruction set is used for

computing image pixel values in order to emulate double

persistence effect of analog displays.

Requirement for high frame rate implies that very short

time interval is available for drawing additional graphic

objects. This is achieved by extensive use of graphic

acceleration capabilities of modern PCs.

A screenshot of Radar Display GUI displaying real-

world radar data is given in Fig. 4. Light blue squares

represent plots, while purple objects represent tracks.

Fig. 4. Radar Display

VI. APPLICATIONS AND FUTURE WORK

Primary application area of the presented system are old

generation military air-surveillance radar systems. These

radar systems either have obsolete data processing

subsystems or do not have data processing subsystems at

all. In addition, they utilize analog visualization devices,

which are hard to maintain. The system we present

significantly increases efficiency of old generation radars

and prolongs their operational lifetime by introducing

modern data processing algorithms and visualization

subsystem.

Other possible application areas of the system we

present include air-traffic control radars, civil marine

radars and vessel tracking service radars.

There are several directions for future development of

our system. First, target tracker will be modified to operate

on azimuthal sector basis, decreasing the delay between

plot detection and track update. Second, support for

multiple radar tracking will be added to target tracker.

Third, research will be conducted to determine the optimal

clutter suppression algorithm.

VII. CONCLUSION

A system for radar data acquisition, processing and

visualization is developed. Most parts of the system are

implemented as software components that run on a

commercially available PC. We describe how we utilize

advanced features of modern microprocessors and

graphical processors to achieve real-time performance of

standard radar data processing procedures and radar data

visualization. Emphasis is put on the fact that the transition

from a custom hardware based implementation to a PC-

based software implementation enables improved system

design. To illustrate this, we describe how the use of

desktop application programming paradigms allowed us to

achieve high system modularity and better interaction

between the user and the system. Possible applications of

the system and directions of future development are

discussed, too.

REFERENCES

[1] M. I. Skolnik (Ed.), Radar Applications. New York: IEEE Press,

1987.

[2] E. Gamma et al., Design Patterns: Elements of Reusable Object-

Oriented Software. Addison Wesley Professional, 1994.

[3] R. Nitzberg, “Clutter map CFAR analysis,” in IEEE Trans. On

Aerospace and Electronic Systems, Vol. AES-22, Issue 4, pp. 419-

421, July 1986.

[4] M. Weiss, “Analysis of some modified cell-averaging CFAR

processors in multiple-target situations,” in IEEE Trans. On

Aerospace and Electronic Systems, Vol. AES-18, No. 1, pp. 102-

114, January 1982.

[5] W. G. Bath, G. V. Trunk, “Automatic detection, tracking, and

sensor integration,” in Radar Handbook, 3rd ed., M. I. Skolnik, Ed.

New York: McGraw-Hill, 2008.

[6] S. Blackman, R. Popoli, Design and Analysis of Modern Tracking

Systems. Norwood, MA: Artech House, 1999.

[7] S. Blackman, Multiple Target Tracking with Radar Applications.

Norwood, MA: Artech House, 1986.

[8] R. E. Kalman, “A new approach to linear filtering and prediction

problems,” in Trans. of the ASME-Journal of Basic Engineering,

82 (Series D), pp. 35-45, 1960.

[9] Y. Bar-Shalom (Ed.), Multitarget-Multisensor Tracking:

Applications and Advances, Vol II. Norwood, MA: Artech House,

1992.

[10] J. Abel et al., “Applications Tuning for Streaming SIMD

Extensions,” in Intel Technology Journal, Q2, 1999.

1318

